Laboratory for Molecular Diagnostics
Center for Nephrology and Metabolic Disorders
Moldiag Diseases Genes Support Contact

Hypophosphatemic rickets with hyperparathyroidism

Hypophosphatemic rickets with hyperparathyroidism is caused by mutations at the klotho locus with massively increased klotho activity.

Symptoms

Hypophosphatemia
Hypophosphatemia is caused by renal phosphate wastage.
Hyperphosphaturia
Hyperphosphaturia is caused by downregulation of phosphate transporters.
Hypercalcemia
The reason for hypercalcemia is rather complex. Elevated PTH levels certainly play a role.
Hyperparathyroidism
Parathyroid hormone is down regulated.
Vitamin D hypovitaminosis
The deficiency of calcitriol is the result of decreased synthesis and increased deactivation.

Systematic

Hypophosphatemic bone and kindney disease
Disorders of the renal phosphate transporters
FGF23-induced hypophosphatemic rickets
Fanconi-type hypophosphatemic rickets
Hypophosphatemic rickets with hyperparathyroidism
KL
Osteoglophonic dysplasia
Raine syndrome
X-linked dominant hypophosphatemic rickets

References:

1.

Kurosu H et al. (2005) Suppression of aging in mice by the hormone Klotho.

external link
2.

Brownstein CA et al. (2008) A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism.

external link
3.

Liu H et al. (2007) Augmented Wnt signaling in a mammalian model of accelerated aging.

external link
4.

Imura A et al. (2007) alpha-Klotho as a regulator of calcium homeostasis.

external link
5.

Haruna Y et al. (2007) Amelioration of progressive renal injury by genetic manipulation of Klotho gene.

external link
6.

Chang Q et al. (2005) The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel.

external link
7.

Bektas A et al. (2004) Klotho gene variation and expression in 20 inbred mouse strains.

external link
8.

Arking DE et al. (2003) KLOTHO allele status and the risk of early-onset occult coronary artery disease.

external link
9.

Manya H et al. (2002) Klotho protein deficiency leads to overactivation of mu-calpain.

external link
10.

Fukino K et al. (2002) Regulation of angiogenesis by the aging suppressor gene klotho.

external link
11.

Arking DE et al. (2002) Association of human aging with a functional variant of klotho.

external link
12.

Koh N et al. (2001) Severely reduced production of klotho in human chronic renal failure kidney.

external link
13.

Mori K et al. (2000) Disruption of klotho gene causes an abnormal energy homeostasis in mice.

external link
14.

Saito Y et al. (2000) In vivo klotho gene delivery protects against endothelial dysfunction in multiple risk factor syndrome.

external link
15.

Matsumura Y et al. (1998) Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein.

external link
16.

Kuro-o M et al. (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing.

external link
17.

Ichikawa S et al. (2007) A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis.

external link
18.

Chen CD et al. (2007) Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17.

external link
19.

Urakawa I et al. (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23.

external link
20.

OMIM.ORG article

Omim 604824 external link
Update: Aug. 14, 2020
Copyright © 2005-2024 by Center for Nephrology and Metabolic Disorders, Dr. Mato Nagel, MD
Albert-Schweitzer-Ring 32, D-02943 Weißwasser, Germany, Tel.: +49-3576-287922, Fax: +49-3576-287944
Sitemap | Webmail | Disclaimer | Privacy Issues | Website Credits