Laboratory for Molecular Diagnostics
Center for Nephrology and Metabolic Disorders
Moldiag Diseases Genes Support Contact

Hyperuricemic nephropathy

Hyperuricemic nephropathy is a group of disorders in which an early rise in serum uric acid levels leads to kidney failure.

Systematic

Uric acid nephropathy
Hyperuricemic nephropathy
Hyperuricemic nephropathy, familial juvenile 1
UMOD
Hyperuricemic nephropathy, familial juvenile 2
REN
Kelley-Seegmiller syndrome
Lesch-Nyhan syndrome
Renal Hypouricemia

References:

1.

Stibůrková B et al. (2003) Familial juvenile hyperuricaemic nephropathy (FJHN): linkage analysis in 15 families, physical and transcriptional characterisation of the FJHN critical region on chromosome 16p11.2 and the analysis of seven candidate genes.

external link
2.

Zivná M et al. (2009) Dominant renin gene mutations associated with early-onset hyperuricemia, anemia, and chronic kidney failure.

external link
3.

McBride MB et al. (1998) Presymptomatic detection of familial juvenile hyperuricaemic nephropathy in children.

external link
4.

Stibůrková B et al. (2000) Familial juvenile hyperuricemic nephropathy: localization of the gene on chromosome 16p11.2-and evidence for genetic heterogeneity.

external link
5.

Hart TC et al. (2002) Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy.

external link
6.

Turner JJ et al. (2003) UROMODULIN mutations cause familial juvenile hyperuricemic nephropathy.

external link
7.

Rampoldi L et al. (2003) Allelism of MCKD, FJHN and GCKD caused by impairment of uromodulin export dynamics.

external link
8.

Vylet'al P et al. (2006) Alterations of uromodulin biology: a common denominator of the genetically heterogeneous FJHN/MCKD syndrome.

external link
9.

Morton NE et al. (1977) Genetic epidemiology of Lesch-Nyhan disease.

external link
10.

None (1977) A probable sex difference in some mutation rates.

external link
11.

Gartler SM et al. (1975) Half chromatid mutations: transmission in humans?

external link
12.

Francke U et al. (1976) The occurrence of new mutants in the X-linked recessive Lesch-Nyhan disease.

external link
13.

Wilson JM et al. (1986) A molecular survey of hypoxanthine-guanine phosphoribosyltransferase deficiency in man.

external link
14.

Kelley WN et al. (1967) A specific enzyme defect in gout associated with overproduction of uric acid.

external link
15.

Nabholz M et al. (1969) Genetic analysis with human--mouse somatic cell hybrids.

external link
16.

McDonald JA et al. (1971) Lesch-Nyhan syndrome: altered kinetic properties of mutant enzyme.

external link
17.

Silvers DN et al. (1972) Detection of heterozygote in Lesch-Nyhan disease by hair-root analysis.

external link
18.

Migeon BR et al. (1968) X-linked hypoxanthine-guanine phosphoribosyl transferase deficiency: heterozygote has two clonal populations.

external link
19.

Yü TF et al. (1972) Rarity of X-linked partial hypoxanthine-guanine phosphoribosyltransferase deficiency in a large gouty population.

external link
20.

Nyhan WL et al. (1970) Hemizygous expression of glucose-6-phosphate dehydrogenase in erythrocytes of heterozygotes for the Lesch-Nyhan syndrome.

external link
21.

Greene ML et al. (1970) Hypoxanthine-guanine phosphoribosyltransferase deficiency and Xg blood group.

external link
22.

Henderson JF et al. (1969) Inheritance of purine phosphoribosyltransferases in man.

external link
23.

Seegmiller JE et al. (1967) Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis.

external link
24.

Rosenbloom FM et al. (1967) Inherited disorder of purine metabolism. Correlation between central nervous system dysfunction and biochemical defects.

external link
25.

Lloyd KG et al. (1981) Biochemical evidence of dysfunction of brain neurotransmitters in the Lesch-Nyhan syndrome.

external link
26.

Strauss GH et al. (1980) An enumerative assay of purine analogue resistant lymphocytes in women heterozygous for the Lesch-Nyhan Mutation.

external link
27.

Ernst M et al. (1996) Presynaptic dopaminergic deficits in Lesch-Nyhan disease.

external link
28.

Nyhan WL et al. (1996) New approaches to understanding Lesch-Nyhan disease.

external link
29.

Wong DF et al. (1996) Dopamine transporters are markedly reduced in Lesch-Nyhan disease in vivo.

external link
30.

Graham GW et al. (1996) Prenatal diagnosis by enzyme analysis in 15 pregnancies at risk for the Lesch-Nyhan syndrome.

external link
31.

Zoref-Shani E et al. (2000) Kelley-Seegmiller syndrome due to a unique variant of hypoxanthine-guanine phosphoribosyltransferase: reduced affinity for 5-phosphoribosyl-1-pyrophosphate manifested only at low, physiological substrate concentrations.

external link
32.

Srivastava T et al. (2002) Childhood hyperuricemia and acute renal failure resulting from a missense mutation in the HPRT gene.

external link
33.

LESCH M et al. (1964) A FAMILIAL DISORDER OF URIC ACID METABOLISM AND CENTRAL NERVOUS SYSTEM FUNCTION.

external link
34.

HOEFNAGEL D et al. (1965) HEREDITARY CHOREOATHETOSIS, SELF-MUTILATION AND HYPERURICEMIA IN YOUNG MALES.

external link
35.

Francke U et al. (1977) Answer to criticism of Morton and Lalouel.

external link
36.

Dehghan A et al. (2008) Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study.

external link
37.

Matsuo H et al. (2009) Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population.

external link
38.

Döring A et al. (2008) SLC2A9 influences uric acid concentrations with pronounced sex-specific effects.

external link
39.

Vitart V et al. (2008) SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout.

external link
40.

Matsuo H et al. (2008) Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia.

external link
41.

Martinon F et al. (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome.

external link
42.

Hodanová K et al. (2005) Mapping of a new candidate locus for uromodulin-associated kidney disease (UAKD) to chromosome 1q41.

external link
43.

Cameron JS et al. (1990) Precocious familial gout.

external link
44.

Van Goor W et al. (1971) An unusual form of renal disease associated with gout and hypertension.

external link
45.

Leumann EP et al. (1983) Familial nephropathy with hyperuricemia and gout.

external link
46.

Massari PU et al. (1980) Familial hyperuricemia and renal disease.

external link
47.

Simmonds HA et al. (1980) Familial gout and renal failure in young women.

external link
48.

Saeki A et al. (1995) Newly discovered familial juvenile gouty nephropathy in a Japanese family.

external link
49.

McBride MB et al. (1997) Familial renal disease or familial juvenile hyperuricaemic nephropathy?

external link
50.

Kamatani N et al. (2000) Localization of a gene for familial juvenile hyperuricemic nephropathy causing underexcretion-type gout to 16p12 by genome-wide linkage analysis of a large family.

external link
51.

Fairbanks LD et al. (2002) Early treatment with allopurinol in familial juvenile hyerpuricaemic nephropathy (FJHN) ameliorates the long-term progression of renal disease.

external link
52.

Stacey JM et al. (2003) Genetic mapping studies of familial juvenile hyperuricemic nephropathy on chromosome 16p11-p13.

external link
53.

DUNCAN H et al. (1960) Gout, familial hypericaemia, and renal disease.

external link
54.

Dahan K et al. (2003) A cluster of mutations in the UMOD gene causes familial juvenile hyperuricemic nephropathy with abnormal expression of uromodulin.

external link
55.

Zaucke F et al. (2010) Uromodulin is expressed in renal primary cilia and UMOD mutations result in decreased ciliary uromodulin expression.

external link
56.

Bernascone I et al. (2010) A transgenic mouse model for uromodulin-associated kidney diseases shows specific tubulo-interstitial damage, urinary concentrating defect and renal failure.

external link
57.

Piret SE et al. (2011) Genome-wide study of familial juvenile hyperuricaemic (gouty) nephropathy (FJHN) indicates a new locus, FJHN3, linked to chromosome 2p22.1-p21.

external link
58.

Frank M et al. (1979) Familial renal hypouricaemia: two additional cases with uric acid lithiasis.

external link
59.

Bakay B et al. (1979) Utilization of purines by an HPRT variant in an intelligent, nonmutilative patient with features of the Lesch-Nyhan syndrome.

external link
60.

Benjamin D et al. (1978) Familial hypouricemia due to isolated renal tubular abnormality.

external link
61.

Upchurch KS et al. (1975) Hypoxanthine phosphoribosyltransferase deficiency: association of reduced catalytic activity with reduced levels of immunologically detectable enzyme protein.

external link
62.

Ghangas GS et al. (1975) Radioimmune determination of hypoxanthine phosphoribosyltransferase crossreacting material in erythrocytes of Lesch-Nyhan patients.

external link
63.

Akaoka I et al. (1975) Familial hypouricaemia due to renal tubular defect of urate transport.

external link
64.

Yukawa T et al. (1992) A female patient with Lesch-Nyhan syndrome.

external link
65.

Moro F et al. (1991) Does allopurinol affect the progression of familial juvenile gouty nephropathy?

external link
66.

Yokota N et al. (1991) Autosomal dominant transmission of gouty arthritis with renal disease in a large Japanese family.

external link
67.

Moro F et al. (1991) Familial juvenile gouty nephropathy with renal urate hypoexcretion preceding renal disease.

external link
68.

Sanberg PR et al. (1990) Neural basis of behavior: animal models of human conditions.

external link
69.

Gafter U et al. (1989) Hypouricemia due to familial isolated renal tubular uricosuria. Evaluation with the combined pyrazinamide-probenecid test.

external link
70.

Page T et al. (1987) Syndrome of mild mental retardation, spastic gait, and skeletal malformations in a family with partial deficiency of hypoxanthine-guanine phosphoribosyltransferase.

external link
71.

Andrés A et al. (1987) Partial deficit of hypoxanthine guanine phosphoribosyl transferase presenting as acute renal failure.

external link
72.

Takeda E et al. (1985) Hereditary renal hypouricemia in children.

external link
73.

van der Zee SP et al. (1968) Megaloblastic anaemia in the Lesch-Nyhan syndrome.

external link
74.

Fujimoto WY et al. (1968) Biochemical diagnosis of an X-linked disease in utero.

external link
75.

Khachadurian AK et al. (1973) Hypouricemia due to renal uricosuria. A case study.

external link
76.

Albertini RJ et al. (1973) Somatic cell mutation. Detection and quantification of x-ray-induced mutation in cultured, diploid human fibroblasts.

external link
77.

Greene ML et al. (1972) Hypouricemia due to isolated renal tubular defect. Dalmatian dog mutation in man.

external link
78.

Boyle JA et al. (1970) Lesch-Nyhan syndrome: preventive control by prenatal diagnosis.

external link
79.

Gibbs DA et al. (1984) First-trimester diagnosis of Lesch-Nyhan syndrome.

external link
80.

Harkness RA et al. (1983) Xanthine oxidase deficiency and 'Dalmatian' hypouricaemia: incidence and effect of exercise.

external link
81.

Shichiri M et al. (1982) Hypouricemia due to an increment in renal tubular urate secretion.

external link
82.

Weitz R et al. (1980) Hereditary renal hypouricemia. Isolated tubular defect of urate reabsorption.

external link
83.

Hedley JM et al. (1980) Familial hypouricaemia associated with renal tubular uricosuria and uric acid calculi: case report.

external link
84.

Jinnah HA et al. (1994) Dopamine deficiency in a genetic mouse model of Lesch-Nyhan disease.

external link
85.

None (1997) The recognition of Lesch-Nyhan syndrome as an inborn error of purine metabolism.

external link
86.

Enomoto A et al. (2002) Molecular identification of a renal urate anion exchanger that regulates blood urate levels.

external link
87.

Tanaka M et al. (2003) Two male siblings with hereditary renal hypouricemia and exercise-induced ARF.

external link
88.

Ichida K et al. (2008) Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese.

external link
89.

Hladnik U et al. (2008) Variable expression of HPRT deficiency in 5 members of a family with the same mutation.

external link
90.

Ceballos-Picot I et al. (2009) Hypoxanthine-guanine phosphoribosyl transferase regulates early developmental programming of dopamine neurons: implications for Lesch-Nyhan disease pathogenesis.

external link
91.

Cristini S et al. (2010) Human neural stem cells: a model system for the study of Lesch-Nyhan disease neurological aspects.

external link
92.

Sarafoglou K et al. (2010) Lesch-Nyhan variant syndrome: variable presentation in 3 affected family members.

external link
93.

Fu R et al. (2015) Clinical severity in Lesch-Nyhan disease: the role of residual enzyme and compensatory pathways.

external link
94.

None (1979) Genetics of hyperuricemia in families with gout.

external link
95.

Healey LA et al. (1967) Hyperuricemia in Filipinos: interaction of heredity and environment.

external link
96.

HAUGE M et al. (1955) Heredity in gout and hyperuricemia.

external link
97.

None (1960) Heredity in primary gout.

external link
98.

NEEL JV et al. (1965) STUDIES ON HYPERURICEMIA. II. A RECONSIDERATION OF THE DISTRIBUTION OF SERUM URIC ACID VALUES IN THE FAMILIES OF SMYTH, COTTERMAN, AND FREYBERG.

external link
99.

Cheng LS et al. (2004) Genomewide scan for gout in taiwanese aborigines reveals linkage to chromosome 4q25.

external link
100.

Woodward OM et al. (2011) ABCG transporters and disease.

external link
101.

Köttgen A et al. (2013) Genome-wide association analyses identify 18 new loci associated with serum urate concentrations.

external link
102.

Belostotsky R et al. (2011) Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome.

external link
103.

Sulem P et al. (2011) Identification of low-frequency variants associated with gout and serum uric acid levels.

external link
104.

Orphanet article

Orphanet ID 209886 external link
Update: Aug. 14, 2020
Copyright © 2005-2024 by Center for Nephrology and Metabolic Disorders, Dr. Mato Nagel, MD
Albert-Schweitzer-Ring 32, D-02943 Weißwasser, Germany, Tel.: +49-3576-287922, Fax: +49-3576-287944
Sitemap | Webmail | Disclaimer | Privacy Issues | Website Credits