Laboratory for Molecular Diagnostics
Center for Nephrology and Metabolic Disorders

Fructose-1,6-bisphosphatase deficiency

Fructose-1,6-bisphosphatase deficiency is an autosomal recessive disorder caused by mutations of the FBP1 gene and characterized by hypoglycemia and metabolic acidosis.

Systematic

Food intolerance
Adult type lactose intolerance
Eosinophil peroxidase deficiency
Fructose intolerance
Fructose malabsorption
Fructose-1,6-bisphosphatase deficiency
FBP1
Fructosuria
Glucose-Galactose Malabsorption
Histamine Intolerance
Lactase deficiency
Lysinuric protein intolerance
Mast cell activation syndrome
Sitosterolemia
Trehalase deficiency

References:

1.

Odievre M et al. (1975) [Fructose 1,6-diphosphatase deficiency in 2 sisters].

[^]
2.

Moses SW et al. (1991) Fructose-1,6-diphosphatase deficiency in Israel.

[^]
3.

Bührdel P et al. (1990) Biochemical and clinical observations in four patients with fructose-1,6-diphosphatase deficiency.

[^]
4.

Baker L et al. (1970) Fasting hypoglycaemia and metabolic acidosis associated with deficiency of hepatic fructose-1,6-diphosphatase activity.

[^]
5.

Sia CL et al. (1969) Studies on the subunit structure of rabbit liver fructose diphosphatase.

[^]
6.

Melancon SB et al. (1972) Detection of fructose-6,-diphosphatase deficiency with use of white blood cells.

[^]
7.

Baerlocher K et al. (1971) Infantile lactic acidosis due to hereditary fructose 1,6-diphosphatase deficiency.

[^]
8.

Pagliara AS et al. (1972) Hepatic fructose-1,6-diphosphatase deficiency. A cause of lactic acidosis and hypoglycemia in infancy.

[^]
9.

Greene HL et al. (1972) "Ketotic hypoglycemia" due to hepatic fructose-1,6-diphosphatase deficiency: treatment with folic acid.

[^]
10.

el-Maghrabi MR et al. (1995) Human fructose-1,6-bisphosphatase gene (FBP1): exon-intron organization, localization to chromosome bands 9q22.2-q22.3, and mutation screening in subjects with fructose-1,6-bisphosphatase deficiency.

[^]
11.

Kikawa Y et al. (1995) Identification of a genetic mutation in a family with fructose-1,6- bisphosphatase deficiency.

[^]
12.

Besley GT et al. (1994) Fructose-1,6-bisphosphatase deficiency: severe phenotype with normal leukocyte enzyme activity.

[^]
13.

Rothschild CB et al. (1995) Fructose-1,6-bisphosphatase: genetic and physical mapping to human chromosome 9q22.3 and evaluation in non-insulin-dependent diabetes mellitus.

[^]
14.

Kikawa Y et al. (1997) Identification of genetic mutations in Japanese patients with fructose-1,6-bisphosphatase deficiency.

[^]
15.

Tillmann H et al. (1998) Isolation and characterization of an allelic cDNA for human muscle fructose-1,6-bisphosphatase.

[^]
16.

Berge KE et al. (2000) Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters.

[^]
17.

Lee MH et al. (2001) Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption.

[^]
18.

Lu K et al. (2001) Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively.

[^]
19.

Repa JJ et al. (2002) Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta.

[^]
20.

Lu K et al. (2002) Molecular cloning, genomic organization, genetic variations, and characterization of murine sterolin genes Abcg5 and Abcg8.

[^]
21.

Matsuura T et al. (2002) Two newly identified genomic mutations in a Japanese female patient with fructose-1,6-bisphosphatase (FBPase) deficiency.

[^]
22.

Yu L et al. (2002) Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion.

[^]
23.

Sehayek E et al. (2002) Loci on chromosomes 14 and 2, distinct from ABCG5/ABCG8, regulate plasma plant sterol levels in a C57BL/6J x CASA/Rk intercross.

[^]
24.

None (2003) Role of ABC transporters in secretion of cholesterol from liver into bile.

[^]
25.

Yang C et al. (2004) Disruption of cholesterol homeostasis by plant sterols.

[^]
26.

Rees DC et al. (2005) Stomatocytic haemolysis and macrothrombocytopenia (Mediterranean stomatocytosis/macrothrombocytopenia) is the haematological presentation of phytosterolaemia.

[^]
27.

Mannucci L et al. (2007) Beta-sitosterolaemia: a new nonsense mutation in the ABCG5 gene.

[^]
28.

Rios J et al. (2010) Identification by whole-genome resequencing of gene defect responsible for severe hypercholesterolemia.

[^]
29.

Li B et al. (2014) Fructose-1,6-bisphosphatase opposes renal carcinoma progression.

[^]
30.

Orphanet article

Orphanet ID 348 [^]
31.

OMIM.ORG article

Omim 229700 [^]
32.

Wikipedia article

Wikipedia EN (Fructose_1,6-bisphosphatase) [^]
Update: April 29, 2019