Laboratory for Molecular Diagnostics
Center for Nephrology and Metabolic Disorders

Pancreas transcription factor 1 subunit alpha

The PTF1A gene encodes a pancreatic transcription factor that plays an imprtant role in development. Mutations cause autosomal recessive pancreatic and cerebellar agenesis.

Genetests:

Research Method Carrier testing
Turnaround 5 days
Specimen type genomic DNA
Clinic Method Massive parallel sequencing
Turnaround 25 days
Specimen type genomic DNA
Research Method Genomic sequencing of the entire coding region
Turnaround 25 days
Specimen type genomic DNA

Related Diseases:

Pancreatic agenesis 2
PTF1A

References:

1.

Odievre M et al. (1975) [Fructose 1,6-diphosphatase deficiency in 2 sisters].

[^]
2.

Moses SW et al. (1991) Fructose-1,6-diphosphatase deficiency in Israel.

[^]
3.

Bührdel P et al. (1990) Biochemical and clinical observations in four patients with fructose-1,6-diphosphatase deficiency.

[^]
4.

Baker L et al. (1970) Fasting hypoglycaemia and metabolic acidosis associated with deficiency of hepatic fructose-1,6-diphosphatase activity.

[^]
5.

Sia CL et al. (1969) Studies on the subunit structure of rabbit liver fructose diphosphatase.

[^]
6.

Melancon SB et al. (1972) Detection of fructose-6,-diphosphatase deficiency with use of white blood cells.

[^]
7.

Baerlocher K et al. (1971) Infantile lactic acidosis due to hereditary fructose 1,6-diphosphatase deficiency.

[^]
8.

Pagliara AS et al. (1972) Hepatic fructose-1,6-diphosphatase deficiency. A cause of lactic acidosis and hypoglycemia in infancy.

[^]
9.

Greene HL et al. (1972) "Ketotic hypoglycemia" due to hepatic fructose-1,6-diphosphatase deficiency: treatment with folic acid.

[^]
10.

el-Maghrabi MR et al. (1995) Human fructose-1,6-bisphosphatase gene (FBP1): exon-intron organization, localization to chromosome bands 9q22.2-q22.3, and mutation screening in subjects with fructose-1,6-bisphosphatase deficiency.

[^]
11.

Kikawa Y et al. (1995) Identification of a genetic mutation in a family with fructose-1,6- bisphosphatase deficiency.

[^]
12.

Besley GT et al. (1994) Fructose-1,6-bisphosphatase deficiency: severe phenotype with normal leukocyte enzyme activity.

[^]
13.

Rothschild CB et al. (1995) Fructose-1,6-bisphosphatase: genetic and physical mapping to human chromosome 9q22.3 and evaluation in non-insulin-dependent diabetes mellitus.

[^]
14.

Kikawa Y et al. (1997) Identification of genetic mutations in Japanese patients with fructose-1,6-bisphosphatase deficiency.

[^]
15.

Tillmann H et al. (1998) Isolation and characterization of an allelic cDNA for human muscle fructose-1,6-bisphosphatase.

[^]
16.

Berge KE et al. (2000) Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters.

[^]
17.

Lee MH et al. (2001) Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption.

[^]
18.

Lu K et al. (2001) Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively.

[^]
19.

Repa JJ et al. (2002) Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta.

[^]
20.

Lu K et al. (2002) Molecular cloning, genomic organization, genetic variations, and characterization of murine sterolin genes Abcg5 and Abcg8.

[^]
21.

Matsuura T et al. (2002) Two newly identified genomic mutations in a Japanese female patient with fructose-1,6-bisphosphatase (FBPase) deficiency.

[^]
22.

Yu L et al. (2002) Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion.

[^]
23.

Sehayek E et al. (2002) Loci on chromosomes 14 and 2, distinct from ABCG5/ABCG8, regulate plasma plant sterol levels in a C57BL/6J x CASA/Rk intercross.

[^]
24.

None (2003) Role of ABC transporters in secretion of cholesterol from liver into bile.

[^]
25.

Yang C et al. (2004) Disruption of cholesterol homeostasis by plant sterols.

[^]
26.

Rees DC et al. (2005) Stomatocytic haemolysis and macrothrombocytopenia (Mediterranean stomatocytosis/macrothrombocytopenia) is the haematological presentation of phytosterolaemia.

[^]
27.

Mannucci L et al. (2007) Beta-sitosterolaemia: a new nonsense mutation in the ABCG5 gene.

[^]
28.

Rios J et al. (2010) Identification by whole-genome resequencing of gene defect responsible for severe hypercholesterolemia.

[^]
29.

Li B et al. (2014) Fructose-1,6-bisphosphatase opposes renal carcinoma progression.

[^]
30.

Tosi R et al. (1978) Immunological dissection of human Ia molecules.

[^]
31.

Duquesnoy RJ et al. (1979) Identification of an HLA-DR-associated system of B-cell alloantigens.

[^]
32.

Todd JA et al. (1990) The A3 allele of the HLA-DQA1 locus is associated with susceptibility to type 1 diabetes in Japanese.

[^]
33.

Helmuth R et al. (1990) HLA-DQ alpha allele and genotype frequencies in various human populations, determined by using enzymatic amplification and oligonucleotide probes.

[^]
34.

Briata P et al. (1989) Alternative splicing of HLA-DQB transcripts and secretion of HLA-DQ beta-chain proteins: allelic polymorphism in splicing and polyadenylylation sites.

[^]
35.

Del Pozzo G et al. (1989) Mummy DNA fragment identified.

[^]
36.

Kwok WW et al. (1989) Mutational analysis of the HLA-DQ3.2 insulin-dependent diabetes mellitus susceptibility gene.

[^]
37.

Gyllensten UB et al. (1988) Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus.

[^]
38.

Todd JA et al. () HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus.

[^]
39.

Okada K et al. (1985) Gene organization of DC and DX subregions of the human major histocompatibility complex.

[^]
40.

Moriuchi J et al. (1985) Nucleotide sequence of an HLA-DQ alpha chain derived from a DRw9 cell line: genetic and evolutionary implications.

[^]
41.

None () Molecular cloning of Ancient Egyptian mummy DNA.

[^]
42.

Nadler LM et al. (1981) Monoclonal antibody identifies a new Ia-like (p29,34) polymorphic system linked to the HLA-D/DR region.

[^]
43.

None (1981) Role of MHC gene products in immune regulation.

[^]
44.

Corte G et al. (1981) Human Ia molecules carrying DC1 determinants differ in both alpha- and beta-subunits from Ia molecules carrying DR determinants.

[^]
45.

Sorrentino R et al. (1983) Microfingerprinting analysis of human Ia molecules favours a three loci model.

[^]
46.

Cohen D et al. (1984) Class II HLA-DC beta-chain DNA restriction fragments differentiate among HLA-DR2 individuals in insulin-dependent diabetes and multiple sclerosis.

[^]
47.

Schenning L et al. (1984) Both alpha and beta chains of HLA-DC class II histocompatibility antigens display extensive polymorphism in their amino-terminal domains.

[^]
48.

Bono MR et al. (1982) Direct evidence of homology between human DC-1 antigen and murine I-A molecules.

[^]
49.

Hsu SH et al. (1981) Genetic control of major histocompatibility complex-linked immune responses to synthetic polypeptides in man.

[^]
50.

Auffray C et al. (1982) cDNA clone for the heavy chain of the human B cell alloantigen DC1: strong sequence homology to the HLA-DR heavy chain.

[^]
51.

Tanigaki N et al. (1980) Molecular identification of human Ia antigens coded for by a gene locus closely linked to HLA-DR locus.

[^]
52.

Accolla RS et al. (1981) Distinct forms of both alpha and beta subunits are present in the human Ia molecular pool.

[^]
53.

Shackelford DA et al. (1981) Human B-cell alloantigens DC1, MT1, and LB12 are identical to each other but distinct from the HLA-DR antigen.

[^]
54.

Meyer CG et al. (1994) HLA-D alleles associated with generalized disease, localized disease, and putative immunity in Onchocerca volvulus infection.

[^]
55.

Suzuki Y et al. (1996) Evidence for genetic regulation of susceptibility to toxoplasmic encephalitis in AIDS patients.

[^]
56.

Nabozny GH et al. (1996) HLA-DQ8 transgenic mice are highly susceptible to collagen-induced arthritis: a novel model for human polyarthritis.

[^]
57.

Bradley DS et al. (1997) HLA-DQB1 polymorphism determines incidence, onset, and severity of collagen-induced arthritis in transgenic mice. Implications in human rheumatoid arthritis.

[^]
58.

Ferber KM et al. (1999) Predictive value of human leukocyte antigen class II typing for the development of islet autoantibodies and insulin-dependent diabetes postpartum in women with gestational diabetes.

[^]
59.

Wen L et al. (2000) In vivo evidence for the contribution of human histocompatibility leukocyte antigen (HLA)-DQ molecules to the development of diabetes.

[^]
60.

Lambert NC et al. (2000) Cutting edge: persistent fetal microchimerism in T lymphocytes is associated with HLA-DQA1*0501: implications in autoimmunity.

[^]
61.

Cucca F et al. (2001) A correlation between the relative predisposition of MHC class II alleles to type 1 diabetes and the structure of their proteins.

[^]
62.

Kim CY et al. (2004) Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease.

[^]
63.

Hovhannisyan Z et al. (2008) The role of HLA-DQ8 beta57 polymorphism in the anti-gluten T-cell response in coeliac disease.

[^]
64.

Stanescu HC et al. (2011) Risk HLA-DQA1 and PLA(2)R1 alleles in idiopathic membranous nephropathy.

[^]
65.

Chong JX et al. (2012) A population-based study of autosomal-recessive disease-causing mutations in a founder population.

[^]
66.

Paulus JM et al. (1978) Platelet formation in Mediterranean macrothrombocytosis.

[^]
67.

None (1975) Mediterranean macrothrombocytopenia.

[^]
68.

Shulman RS et al. (1976) Beta-sitosterolemia and xanthomatosis.

[^]
69.

Hatanaka I et al. (1990) Spinal cord compression with paraplegia in xanthomatosis due to normocholesterolemic sitosterolemia.

[^]
70.

Nguyen LB et al. (1990) A molecular defect in hepatic cholesterol biosynthesis in sitosterolemia with xanthomatosis.

[^]
71.

Beaty TH et al. (1986) Genetic analysis of plasma sitosterol, apoprotein B, and lipoproteins in a large Amish pedigree with sitosterolemia.

[^]
72.

Salen G et al. (1985) Increased plasma cholestanol and 5 alpha-saturated plant sterol derivatives in subjects with sitosterolemia and xanthomatosis.

[^]
73.

Skrede B et al. (1985) The presence of 5 alpha-sitostanol in the serum of a patient with phytosterolemia, and its biosynthesis from plant steroids in rats with bile fistula.

[^]
74.

Bhattacharyya AK et al. (1974) Beta-sitosterolemia and xanthomatosis. A newly described lipid storage disease in two sisters.

[^]
75.

Ducrou W et al. (1969) Stomatocytes, haemolytic anaemia and abdominal pain in Mediterranean migrants. Some examples of a new syndrome?

[^]
76.

Kwiterovich PO et al. (1981) Hyperapobetalipoproteinaemia in two families with xanthomas and phytosterolaemia.

[^]
77.

Brahimi S et al. (1984) Platelet count and mean platelet volume in an Algerian population indicating a low prevalence of Mediterranean macrothrombocytopenia.

[^]
78.

None (1980) Phytosterolaemia, xanthomatosis and premature atherosclerotic arterial disease: a case with high plant sterol absorption, impaired sterol elimination and low cholesterol synthesis.

[^]
79.

Wang C et al. (1981) A unique patient with coexisting cerebrotendinous xanthomatosis and beta-sitosterolemia.

[^]
80.

Salen G et al. (1996) Abnormal cholesterol biosynthesis in sitosterolaemia and the Smith-Lemli-Opitz syndrome.

[^]
81.

Patel SB et al. (1998) Mapping a gene involved in regulating dietary cholesterol absorption. The sitosterolemia locus is found at chromosome 2p21.

[^]
82.

Savoia A et al. (2001) Autosomal dominant macrothrombocytopenia in Italy is most frequently a type of heterozygous Bernard-Soulier syndrome.

[^]
83.

Lu K et al. (2001) High-resolution physical and transcript map of human chromosome 2p21 containing the sitosterolaemia locus.

[^]
84.

Lee MH et al. (2001) Fine mapping of a gene responsible for regulating dietary cholesterol absorption; founder effects underlie cases of phytosterolaemia in multiple communities.

[^]
85.

None (2003) Images in clinical medicine. Phytosterolemia and xanthomatosis.

[^]
86.

Solcà C et al. (2005) Sitosterolaemia in Switzerland: molecular genetics links the US Amish-Mennonites to their European roots.

[^]
87.

Stewart GW et al. (2006) Mediterranean stomatocytosis/macrothrombocytopenia: update from Adelaide, Australia.

[^]
88.

Buch S et al. (2007) A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease.

[^]
89.

Stewart GW et al. (2008) Mediterranean macrothrombocytopenia and phytosterolaemia/sitosterolaemia.

[^]
90.

van den Ouweland JM et al. (1992) Mutation in mitochondrial tRNA(Leu)(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness.

[^]
91.

Ballinger SW et al. (1992) Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion.

[^]
92.

Reardon W et al. (1992) Diabetes mellitus associated with a pathogenic point mutation in mitochondrial DNA.

[^]
93.

Alcolado JC et al. (1991) Importance of maternal history of non-insulin dependent diabetic patients.

[^]
94.

Sue CM et al. (1993) Mitochondrial gene mutations and diabetes mellitus.

[^]
95.

Ballinger SW et al. (1994) Mitochondrial diabetes revisited.

[^]
96.

Schulz JB et al. (1993) Mitochondrial gene mutations and diabetes mellitus.

[^]
97.

Velho G et al. (1996) Clinical phenotypes, insulin secretion, and insulin sensitivity in kindreds with maternally inherited diabetes and deafness due to mitochondrial tRNALeu(UUR) gene mutation.

[^]
98.

't Hart LM et al. (1996) Heteroplasmy levels of a mitochondrial gene mutation associated with diabetes mellitus decrease in leucocyte DNA upon aging.

[^]
99.

Vialettes BH et al. (1997) Phenotypic expression of diabetes secondary to a T14709C mutation of mitochondrial DNA. Comparison with MIDD syndrome (A3243G mutation): a case report.

[^]
100.

Kameoka K et al. (1998) Novel mitochondrial DNA mutation in tRNA(Lys) (8296A-->G) associated with diabetes.

[^]
101.

Martin Negrier ML et al. (1998) Partial triplication of mtDNA in maternally transmitted diabetes mellitus and deafness.

[^]
102.

Chinnery PF et al. (1999) Nonrandom tissue distribution of mutant mtDNA.

[^]
103.

Guillausseau PJ et al. (2001) Maternally inherited diabetes and deafness: a multicenter study.

[^]
104.

None (2001) Mitochondrial DNA mutations and diabetes: another step toward individualized medicine.

[^]
105.

Ogun O et al. (2012) Pearls & oy-sters: maternally inherited diabetes and deafness presenting with ptosis and macular pattern dystrophy.

[^]
106.

Krapp A et al. (1996) The p48 DNA-binding subunit of transcription factor PTF1 is a new exocrine pancreas-specific basic helix-loop-helix protein.

[^]
107.

Krapp A et al. (1998) The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas.

[^]
108.

Hoveyda N et al. (1999) Neonatal diabetes mellitus and cerebellar hypoplasia/agenesis: report of a new recessive syndrome.

[^]
109.

Adell T et al. (2000) Role of the basic helix-loop-helix transcription factor p48 in the differentiation phenotype of exocrine pancreas cancer cells.

[^]
110.

Rose SD et al. (2001) The role of PTF1-P48 in pancreatic acinar gene expression.

[^]
111.

Kawaguchi Y et al. (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors.

[^]
112.

Sellick GS et al. (2003) A novel gene for neonatal diabetes maps to chromosome 10p12.1-p13.

[^]
113.

Sellick GS et al. (2004) Mutations in PTF1A cause pancreatic and cerebellar agenesis.

[^]
114.

Masui T et al. (2007) Early pancreatic development requires the vertebrate Suppressor of Hairless (RBPJ) in the PTF1 bHLH complex.

[^]
115.

Al-Shammari M et al. (2011) A novel PTF1A mutation in a patient with severe pancreatic and cerebellar involvement.

[^]
116.

Weedon MN et al. (2014) Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis.

[^]
117.

OMIM.ORG article

Omim 607194 [^]
118.

Orphanet article

Orphanet ID 118135 [^]
119.

NCBI article

NCBI 256297 [^]
120.

Wikipedia article

Wikipedia EN (PTF1A) [^]
Update: April 29, 2019