Laboratory for Molecular Diagnostics
Center for Nephrology and Metabolic Disorders

LDL receptor-related protein 5

The LRP5 encodes an LDL receptor which internalizes bound LDL particles by endocytosis. It plays an important role in bone, liver and eye. Mutations cause various disorders of bone mineralization, exudative vitreoretinopathy 4, and in the liver the formation of multiple cysts.

Genetests:

Clinic Method Carrier testing
Turnaround 5
Specimen type genomic DNA
Research Method Multiplex Ligation-Dependent Probe Amplification
Turnaround 25
Specimen type genomic DNA
Research Method Genomic sequencing of the entire coding region
Turnaround 25
Specimen type genomic DNA
Clinic Method Massive parallel sequencing
Turnaround 25
Specimen type genomic DNA

Related Diseases:

Autosomal dominant osteopetrosis 1
LRP5
Polycystic liver disease
LRP5
Polycystic liver disease 1
PRKCSH
Polycystic liver disease 2
SEC63
Osteoporosis/renal Osteodystrophy
CASR
LRP5
RXRA
VDR

References:

1.

None (1995) Familial exudative vitreoretinopathy.

[^]
2.

Shastry BS et. al. (1997) Familial exudative vitreoretinopathy: further evidence for genetic heterogeneity.

[^]
3.

Hey PJ et. al. (1998) Cloning of a novel member of the low-density lipoprotein receptor family.

[^]
4.

Dong Y et. al. (1998) Molecular cloning and characterization of LR3, a novel LDL receptor family protein with mitogenic activity.

[^]
5.

de Crecchio G et. al. (1998) Autosomal recessive familial exudative vitreoretinopathy: evidence for genetic heterogeneity.

[^]
6.

Chen D et. al. (1999) Molecular cloning of mouse Lrp7(Lr3) cDNA and chromosomal mapping of orthologous genes in mouse and human.

[^]
7.

Mao J et. al. (2001) Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway.

[^]
8.

Twells RC et. al. (2001) The sequence and gene characterization of a 400-kb candidate region for IDDM4 on chromosome 11q13.

[^]
9.

Gong Y et. al. (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development.

[^]
10.

Little RD et. al. (2002) A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait.

[^]
11.

Kato M et. al. (2002) Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor.

[^]
12.

Boyden LM et. al. (2002) High bone density due to a mutation in LDL-receptor-related protein 5.

[^]
13.

Magoori K et. al. (2003) Severe hypercholesterolemia, impaired fat tolerance, and advanced atherosclerosis in mice lacking both low density lipoprotein receptor-related protein 5 and apolipoprotein E.

[^]
14.

Fujino T et. al. (2003) Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion.

[^]
15.

Van Wesenbeeck L et. al. (2003) Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density.

[^]
16.

Twells RC et. al. (2003) Haplotype structure, LD blocks, and uneven recombination within the LRP5 gene.

[^]
17.

Kondo H et. al. (2003) Frizzled 4 gene (FZD4) mutations in patients with familial exudative vitreoretinopathy with variable expressivity.

[^]
18.

Mizuguchi T et. al. (2004) LRP5, low-density-lipoprotein-receptor-related protein 5, is a determinant for bone mineral density.

[^]
19.

Toomes C et. al. (2004) Mutations in LRP5 or FZD4 underlie the common familial exudative vitreoretinopathy locus on chromosome 11q.

[^]
20.

Ferrari SL et. al. (2004) Polymorphisms in the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size, and stature in whites.

[^]
21.

Jiao X et. al. (2004) Autosomal recessive familial exudative vitreoretinopathy is associated with mutations in LRP5.

[^]
22.

Semënov M et. al. (2005) SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor.

[^]
23.

Qin M et. al. (2005) Complexity of the genotype-phenotype correlation in familial exudative vitreoretinopathy with mutations in the LRP5 and/or FZD4 genes.

[^]
24.

Ai M et. al. (2005) Clinical and molecular findings in osteoporosis-pseudoglioma syndrome.

[^]
25.

Clément-Lacroix P et. al. (2005) Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice.

[^]
26.

Guo YF et. al. (2006) Polymorphisms of the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with obesity phenotypes in a large family-based association study.

[^]
27.

Qin M et. al. (2008) Moderate reduction of Norrin signaling activity associated with the causative missense mutations identified in patients with familial exudative vitreoretinopathy.

[^]
28.

Yadav VK et. al. (2008) Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum.

[^]
29.

Narumi S et. al. (2010) Various types of LRP5 mutations in four patients with osteoporosis-pseudoglioma syndrome: identification of a 7.2-kb microdeletion using oligonucleotide tiling microarray.

[^]
30.

Cui Y et. al. (2011) Lrp5 functions in bone to regulate bone mass.

[^]
Update: Sept. 26, 2018