Coenzyme Q10 deficiency is a heterogeneous autosomal recessive mitochondrial encephalomyopathy. There is no clear genotype-phenotype correlation. Clinical symptoms include the central nervous system, muscles, heart, kidney and growth.
Five major clinical phenotypes can be distinguished: (1) encephalomyopathic form with ataxia and seizures; (2) multisystem infantile form with encephalopathy, cardiomyopathy, and nephropathy; (3) cerebellar form with cerebellar atrophy and consequentially ataxia; (4) Leigh syndrome with growth retardation; and (5) isolated myopathic form.
In about 50% of cases, ubiquinon levels are low in muscle cells.
The disorder can be successfully treated in some cases by Coenzyme Q10 substitution. The dosis is usually 5 to 30 mg/kg. In some cases, however, if severe neurological symptoms are present, doses of up to 3g/d can be used in adults.
| 1. |
Iiizumi M et al. (2002) Isolation of a novel gene, CABC1, encoding a mitochondrial protein that is highly homologous to yeast activity of bc1 complex.
|
| 2. |
Heeringa SF et al. (2011) COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness.
|
| 3. |
Duncan AJ et al. (2009) A nonsense mutation in COQ9 causes autosomal-recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease.
|
| 4. |
Johnson A et al. (2005) COQ9, a new gene required for the biosynthesis of coenzyme Q in Saccharomyces cerevisiae.
|
| 5. |
Loftus BJ et al. (1999) Genome duplications and other features in 12 Mb of DNA sequence from human chromosome 16p and 16q.
|
| 6. |
Peng M et al. (2008) Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease.
|
| 7. |
López LC et al. (2006) Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations.
|
| 8. |
None (2013) Mutations in COQ2 in familial and sporadic multiple-system atrophy.
|
| 9. |
Diomedi-Camassei F et al. (2007) COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement.
|
| 10. |
Hara K et al. (2007) Multiplex families with multiple system atrophy.
|
| 11. |
López-Martín JM et al. (2007) Missense mutation of the COQ2 gene causes defects of bioenergetics and de novo pyrimidine synthesis.
|
| 12. |
Quinzii C et al. (2006) A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency.
|
| 13. |
Salviati L et al. (2005) Infantile encephalomyopathy and nephropathy with CoQ10 deficiency: a CoQ10-responsive condition.
|
| 14. |
Forsgren M et al. (2004) Isolation and functional expression of human COQ2, a gene encoding a polyprenyl transferase involved in the synthesis of CoQ.
|
| 15. |
Mollet J et al. (2007) Prenyldiphosphate synthase, subunit 1 (PDSS1) and OH-benzoate polyprenyltransferase (COQ2) mutations in ubiquinone deficiency and oxidative phosphorylation disorders.
|
| 16. |
Saiki R et al. (2005) Characterization of solanesyl and decaprenyl diphosphate synthases in mice and humans.
|
| 17. |
Quinzii CM et al. (2010) Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ10 deficiency.
|
| 18. |
Lagier-Tourenne C et al. (2008) ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency.
|
| 19. |
Mollet J et al. (2008) CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures.
|
| 20. |
Auré K et al. (2004) Progression despite replacement of a myopathic form of coenzyme Q10 defect.
|
| 21. |
Lamperti C et al. (2003) Cerebellar ataxia and coenzyme Q10 deficiency.
|
| 22. |
Lai CH et al. (2000) Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics.
|
| 23. |
OMIM.ORG article Omim 609825
|
| 24. |
Orphanet article Orphanet ID 139485
|
| 25. |
Wikipedia article Wikipedia EN (Coenzyme_Q10_deficiency)
|